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§1 Electrical Intuition/Instrumentation

§1.1 Electrical Intuition
What is electrical engineering?

• Electromagnetics, Chemistry, Physics

• Solid state

• Passives (resistors, capacitors, inductors), transistors, diodes

• Integrated circuit(IC)s

• Schematics

• Code and algorithms (e.g. FFT, ML)

Question: What is electricity and how does it flow

• Electricity is a flow of electrons (e− )

• Electric potential (V ) works as a "force" pushing the electricity flow

A battery is a source of electric potential. For example, a 1.5V battery has a potential difference of 1.5V
between its positive and negative terminal. For electricity to flow, there should be a closed loop between
the positive and negative sides.

Resistor

LED
(diode)

Assumption: there is no voltage drop within a wire

Definition Kirchhoff’s Voltage Law
In a closed loop, the sum of voltage is 0: ∑

loop
V = 0

Polarized component: direction matters
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• anode:

• cathode

longer leg has to be on higher potential

forward voltage: a minimum voltage for the LED to light up

we can fix this by connecting two batteries in series

The schematic symbol for a battery (longer side is +)

+
-

1.5V

A symbol for LED (diode) is

anode cathode

Definition diode
A diode only allows the flow of current in one direction

Anode is the side with the higher potential

• A loop of a circuit starts and ends at the same point.

• A node is a location within the circuit which is at the same potential

• A junction of a circuit

Example: When I touch two ends of a battery, current flows through my body.
Yes, a loop is formed by the two fingers, and there is a finite resistance in our body which makes
some current flow.
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Example: If I connect a AA battery (1.5V ) to a 1000V power wire, the other end of the battery
will be at 1001.5V .
True,

Example: If I touch a 1000V wire, I’m going to get a nasty shock
Depends, becasue if we are grounded, that is going to form a closed loop and going to hurt.

(talk about resistors)

§1.1.1 Voltage and Current
Current: flow of charges Voltage: pushes the charges

The I-V curve

i (current)

V (Voltage)

slope: resistance R

The slope of i − V curve is the resistance R.

Ohm’s Law
V = iR

vf

For diodes, there is a spike of current after a certain voltage. A diode only allows a current to pass in one
direction if V > Vf .

Resistors in series

• Current I stays the same across circuit

5
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• Each element may have different voltage drops

Resistors in parallel: they should share two nodes to be parallel

• The voltage V must stay the same across circuit

• Each element may have different current

Simplifications for analysis (ideal components)

• wires: no resistance (R = 0)

• Resistors: purely linear in the IV curve (V = IR)

• Diodes, LEDs: no changing voltage drop due to current

• Sources: ideal (no internal resistance)

§1.2 Instrumentation
Breadboard

• in the middle, the five nodes are electrically connected

• in the edges, the nodes are for power connection and are horizontally connected all the way through

Analog Discovery Tool

• two oscilloscopes: measure voltage over time

• ground reference: voltage is always relative

• power supply

• W1 and W2 are two independent waveform generator

• Digital logic:

Potentiometers: variable resistance (turn the knob)

The second pin acts as a ’wiper’ and changes the resistance between pin 1 and 2.

§1.3 Voltage, Current, Ohms Law, Sources

§1.3.1 Coulombs Law and Electric Field

Definition Coulomb’s Law
Given charges q1 and q2, the force between two objects are

F = q1q2

4πϵ0r2 r̂ = E12q2r̂

The term E12 is the electric field generated by the first charge.
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• Electrons: q = −1.602 × 10−19 C.

• Protons: q = 1.602 × 10−19 C.

§1.3.2 Current and Electric Potential

Definition Current
Current is the rate of change of charge with respect to time

i = dq

dt

Analogy with gravitational potential: If a mass (m) is raised to a certain height ( h ) relative to the ground
(h = 0 ), the gravitational potential energy is U = mgh. In this case, the absolute potential is the
mass independent value, gh. The gravitational force on the object is F = mg.

For electric potential, the charge (q) is h away from the ground (V = 0). The electric force is F = qE.

• potential energy: qEh

• absolute potential: Eh (assuming constant, conservative E⃗)

Zero potential can be chosen arbitrarily (potential is always relative)

§1.3.3 Energy and power
moving one colomb of charge through a potential of one volt yields one jouls of potential energy

The conventional current moves in the opposite direction of the electrons. (Think about positive
charges moving)

Joule = coulomb × Volts

For i amps elevated by V volts, the battery must source iV Watts (joules/sec)

Definition Power
Power is current times voltage

P (t) = i(t)V (t)

The SI unit for power is Watts (W)

When the current flows into the battery, the battery is absorbing(dissipating) power.

• Generating power: current flows from negative to positive terminal

• Dissipating power: current flows from positive to negative terminal

When the battery flips, the polarity of the resistor also changes because resistor can only dissipate power.
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Definition Ohm’s Law
For resistors,

V = iR

where R is resistance and is measured in ohms (ω)

For resistors,

P (t) = i(t)v(t)
= i(t) [i(t)R] = i2(t)R

§1.3.4 Sources
A DC voltage source has a fixed voltage no matter the current. In a i-V graph, voltage source represents
a vertical line.

A current source supplies a set current no matter what voltage. In a i-V graph, current source represents
a horizontal line.

For ideal sources, we make assumption of no internal resistance

Definition Kirchhoff’s Laws
Kirchhoff’s Voltage Law: The sum of all rises and falls of electric potential (voltage) around any
closed loop in a circuit is 0: ∑

loop
∆V = 0

Kirchhoff’s Current Law: In a node (junction), the sum of all currents entering the nodes must
equal the sum of all currents leaving the node:∑

junction
i = 0

The directions of loops can be chosen arbitrarily, and the answer is always correct if calculation stays
consistent. If the current returns a negative value, this suggests opposite direction.

Example: KVL Example

5V

5V9Ω 6Ω

3Ω

A B C

DEF

8
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Solution. The polarity can be labled based on the arbitrary current direction we chose.

Loop ABEF : ∑
∆V = 12 − 9i1 − 6i1 − 10i3

Loop BCDE: ∑
V = 5 − 3i2 + 10i3

Node B:
i1 = i2 + i3

This gives a system of equation with 3 unknowns and 3 equations. Solving,

i1 = 0.916A

i2 = 1.089A

i3 = −0.173A

The negative sign on the i3 suggests that the current actually flows up.

Power Analysis

Components generating power: 12V battery, 5V battery

• P12V = iV = (0.916)(12) = 10.987W

• P5V = iV = (1.089)(5) = 5.444W

Components dissipating power: all resistors

• P9Ω = iV = i2R = (0.916)2(9) = 7.544W .

Im too lazy to write rest but power generated should equal power dissipated

Pgen = Pdis = 16.413W

Example: KVL with a current source

A B C

DEF

12V 3Ω

9Ω 6Ω

9A

5V

Solution. Loop ACDF :
12 − 9i1 − 6i1 + 5 − 3i2
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From node B:
i2 = i1 + 9

Solving, we get
i1 = −0.556A i2 = i1 + 9 = 8.444A

Now we need to solve for the voltage over the current source.

If the 3Ω resistor becomes an open circuit,

§1.4 Circuit Simplification

R3

R2R1

V1

V2 V3

V1 + V2 + V3 = i(R1 + R2 + R3)

Here, we can say that V1 +V2 +V3 is an equivalent voltage Veq and R1 +R2 +R3 as the equivalent resistance
Req. This reduces to a circuit

Veq
Req
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§2 Circuit Analysis

§2.1 Voltage, Current, Ohm’s Law

§2.2 Kirchhoff’s Laws
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§3 Semiconductors

§3.1 PN Junctions

§3.1.1 Intrinsic Semiconductor
Electrons have multiple shells. The electron "jumps" to an upper shell as it gains energy.

Conduction

Valence

E

Ec

Ev

band gap

If an electron moves out, it leaves a "vacancy space" with a much lower energy space. Then, another
electron moves to fill in the space. This shows a pattern of conduction:

• Electrons are moving down the lattice

• vacancies are "moving up" the lattice

For metals, conduction and valence bands overlap, making them good conductors.

§3.1.2 Extrinsic Semiconductor
We ’dope’ intrinsic semiconductors

• N-type: dope with donors (atoms with one more valance electron than intrinsic semiconductor)

• P-type: dope with acceptors (atoms with one less valence electron)

What is doping?: Process of bombarding the material with other atoms, and displacing intrinsic atoms

In n-type, majority carriers are electrons, and in p-type, majority carriers are the holes.

The material is still net neutral. They are not ions

PN Junction

Red circles are holes, blue circles are electrons

12
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P N

-
+

Potential barrier

Depletion region: there is a barrier in the middle depleted of charge carriers

We have to overcome this potential barrier if we want the material to conduct.

Built-in voltage

Vbi = VT ln
(

NAND

n2
i

)
where VT is the thermal voltage, NA is the acceptor concentration on p-side, ND is the donor concentration
on the n side, and ni is intrinsic carrier concentration.

VT is a constant just dependent on room temperature. ni is a constant dependant on material and
temperature.

External Bias

We have a PN junction connected to an external voltage source

• If V < 0, depletion region increases and no current flow (reverse bias)

• If 0 < V < Vbi, depletion region decreases but no significant current flow (reverse bias)

• If Vbi < V , we overcome potential barrier and current flows (forward bias)

(drift vs diffusion) There is a diffusion current whenever there is a difference in concentration (because
they want low energy)

Electrons are going to rush into the P side –> diffusion current

The ionization creates an electric field
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§3.2 Signals and Systems

§3.2.1 Signals

Definition Signal
Signals are anything that conveys information

• often converted to a voltage
• can be multi-dimensional

We can represent continuous signals with x(t) :

Discrete signals are x [n]

For two dimensional signals,

Why do we use signals?

• we can analyze and predict things (eg. stock market)

• we can transform (eg. image compression)

§3.2.2 Systems
For a system, there is a signal coming in and a signal coming out (can be either discrete or continuous)

14
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Example: Continuous time system

Solving in time domain,

Vs(t) = VR(t) + VC(t)
= i(t)R + VC(t)

= C
dVC(t)

dt
R + VC(t)

This circuit is a system that converts VS(t) to VC(t) in the form

dVc(t)
dt

+ 1
RC

VC(t) = 1
RC

Vs(t)

Example: Discrete time system
For a bank account,

• y [n] : balance at month n
• x [n] : deposit at month n
• 5% interest rate

The system is
y [n] = 1.05y [n − 1] + x [n]

A sampler takes a continuous signal x(t) and outputs a discrete signal x [n]

15
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We would get a signal output of x (nTs). where Ts is the sampling period.

The signals are sampled in uniform sampling periods. We are grabbing integer values of the continuous
signals

How fast do should we sample? We have to make an assumption that we are going to draw the lowest
frequency signals that goes through the sample.

Any signal can be a summation (linear combinations) of cosines

Corollary: if one sampling rate is fast enough, then the faster sampling rate is also fast enough

How often must we sample a pure sinusoid?

• For once per period, there will be a straight line and it is not enough

• For twice per period, we can know the frequency but we dont know the amplitude and phase

• For three times per period,

sampling frequency must be greater than at least twice faster than the highest frequency in the signal

Example: Music
Music is often sampled at 44100 hz because humans can hear around up to 22000 hz

If the sampling frequency is too low, there is a problem

aliasing

16



§4 Phasor

§4.1 Two Port Network
Consider a circuit

There is an input voltage and an output voltage. This RC circuit can be characterized as two-port
network where

We can figure out Vout with phasor analysis:

˜Vout = Ṽin

1
jωC

R + 1
jωC

= Ṽin
1

1 + jωRC

Then, we can say that

H(ω) = Ṽout

Ṽin

= 1
1 + jωRC

This makes H(ω) likes a function, where Ṽout = H(ω)Ṽin.

Definition Transfer function
This H(ω) is called a transfer function

The amplitude of the transfer function ignores the phases

|H(ω)| =
∣∣∣∣∣ Ṽout

Ṽin

∣∣∣∣∣ = 1√
1 + (ωRC)2

Then,
∡H(ω) = ∡Ṽout − ∡Ṽin

17
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§4.2 Filtering
A filter passes some frequency and cuts off other. We rewrite the magnitude of H(ω) in terms of f where
ω = 2πf

|H(f)| = 1√
1 + (2πfRC)2

= 1√
1 +

(
f
B

)2

where B = 1
2πRC

and is called the bandwidth of the filter.

If we write the phase,

∡H(f) = − tan−1(2πfRC) = − tan−1
(

f

B

)
Then, we can plot the filter

We can see that low frequency signals return a similar value, but high frequency signal gets attenuated.
This is called a Low Pass Filter (LPF) since it only lets low frequencies through.

The bandwidth B is the point where the amplitude drops below 1√
2 . The frequencies greater than band-

width is called a stopband and frequencies lower than bandwidth is called passband. The bandwidth is
often referred as the cutoff frequency since it cuts off (not fully) the frequency.

Intuitively, why does the RC circuit act as a low-pass filter (why does it only pass low frequency)
• capacitor has a low impedance at low frequency

18
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Also note that ideal low pass filter would be a square

If we graph the phase,

• At B, the phase is −45◦

• The phase approaches −90◦

• note that this is arctan

For example, lets say
Vin = 10 cos(2π100t + 50◦)

Vout = 1 cos(2π100t − 30◦)

The amplitude of Vout is lower because of attenuation in high frequency, and the phase is also lower

Now, lets look at a high pass filter

Calculating the transfer function,

H(ω) = Ṽout

Ṽin

= R

R + 1
jωC

Graphing the amplitude,

19
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If we put a low pass filter and high pass filter in series,

This is called a band-pass filter.

Lets look at another filter

The transfer function is
H(ω) = Ṽout

Ṽin

= jωL

R + jωL

This would also be a high pass filter

20
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It is not a coincidence that
B = 1

τ
τ = L

R

Examples of Band-Pass Filter

The transfer function is
H(ω) = ZLC

R + ZLC

• At low frequencies, capacitor is an open circuit and inductor is a short circuit.

• A high frequencies, capacitor acts as an wire but inductor is open

• At resonance, the combination acts like an open circuit (impedance goes to infinity)

21



§5 Signals and Systems

§5.1 Intro to Signals and Systems

§5.1.1 Signals

Definition Signal
Signals are anything that conveys information

• often converted to a voltage
• can be multi-dimensional (audio, image, machine learning, etc)

Signals can be represented as continuous signals or discrete signals:

Continuous signals with x(t) :

Discrete signals are x [n]:

For two dimensional signals,

Question: Why do we use signals?
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• we can analyze and predict things (eg. stock market)

• we can transform (eg. image compression)

§5.1.2 Systems

Definition System
A system is anything that acts on a signal.

For a system, there is a signal coming in and a signal coming out (can be either discrete or continuous)

Example: Continuous time system
Consider a RC circuit

This is a system that converts VS into VC .

Here, the input voltage VS(t) is the input signal and the output voltage across the capacitor VC(t) is the
output signal. We can solve VC as a function of VS. Solving in time domain,

Vs(t) = VR(t) + VC(t)
= i(t)R + VC(t)

= C
dVC(t)

dt
R + VC(t)

What we are left is with a differential equation

dVC(t)
dt

+ 1
RC

VC(t) = 1
RC

VS(t).

This circuit is a system that converts VS(t) to VC(t) in the form

23
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dVc(t)
dt

+ 1
RC

VC(t) = 1
RC

Vs(t)
VS(t)

VC(t)

In later classes, this proper analysis technique is called laplace transform.

Example: Discrete time system
For a bank account,

• y [n] : balance at month n
• x [n] : deposit at month n
• 5% interest rate

The system is
y [n] = 1.05y [n − 1] + x [n]

This is called difference equation (instead of differential, which is continuous) which describes the system.

§5.1.3 Sampling
A sampler takes a continuous signal x(t) in and outputs a discrete signal x [n]

We would get a signal output of x [n] = x (nTs) where Ts is the sampling period.

24
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This is called uniform sampling because the signals are sampled in uniform sampling periods. A sampler
essentially grabs integer values of the continuous signals

Question: How fast should we sample? There are infinitely many signals that goes through the
same discrete points.
Answer: We have to make an assumption that we are going to draw the lowest frequency signals
that goes through the sample.

Lets say we have a sampling period of T1, which is sufficient to sample the following wave:

If Ts1 is dense enough, then Ts2 which is Ts2 < Ts1 is also dense enough.

Note: Any signal can be a summation (linear combinations) of cosines

Corollary: if one sampling rate is fast enough, then the faster sampling rate is also fast enough

How often must we sample a pure sinusoid?

• For once per period, there will be a straight line and it is not enough

• For twice per period, we can know the frequency but we dont know the amplitude and phase

• For three times per period, we have the info

But because we are interested in periods, we sample twice per period (ask this again in OH or smth)

sampling frequency must be greater than at least twice faster than the highest frequency in the signal

Example: Music
Music is often sampled at 44100 hz because humans can hear around up to 22000 hz

If the sampling frequency is too low, there is a problem called aliasing. This would be covered later in
the class.

§5.2 Fourier Series

Question: How do we found out frequencies that makes up a signal?

25
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§5.2.1 Periodicity
A signal repeats every period. Consider a wave

This signal can be written as
x(t) = x(t − kT0)

where k = 0, 1, 2, . . .

Any signal can be decomposed into a summation of sine waves, where each waves have individual frequency.
The fundamental frequency is how often the total signal repeats.

Definition Fundamentals
The fundamental is the frequency or the period where the overall signals repeat

• T0 is the fundamental period
• f0 is the fundamental frequency

f0 = 1
T0

This same notion of periodicity can be applied to discrete signals

x [n] = x [n − kN0]

Question: How do we find the fundamental frequency and period?

26
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Lets say there is a signal

x(t) = A1 cos(2πf1t) + A2 cos(2πf2t) + · · · + An cos(2πfnt)

how can we get the overall periodicity of x(t)?

The fundamental period T0 can be stated as the least common multiple as constituent periods

T0 = lcm (T1, T2, . . . , Tn)

The fundamental frequency is the greatest common factor of constituent frequencies

f0 = 1
T0

= gcd (f1, f2, . . . , fn)

§5.2.2 Fourier Series
Big Picture: Fourier Series is a decomposition into parts that are easier to analyze.

• Analysis: breakdown of signal

• Synthesis: combine signals

For fourier series, we want to break our signal up into simple parts (sinusoids)

Example: Signals with fixed period of 1

Here, we can analyze a signal with period 1 instead of arbitraty T0.

We can use sin(2πt) or cos(2πt) since they have a frequency of 1.

Observe that sin(4πt) has a frequency of 2Hz and a period of T = 0.5s, but also repeats every 1s. In
a similar sense, sin (6πt) has a period of T = 1

3s but also repeats every 1s, not breaking the periodicity
(because gcd of the frequencies are still 1). In this sense, sin(2πnt) where n ∈ Z would not break the
periodicity of 1.

Revisiting the sampling frequency, we can

1. decompose the waves

2. choose the wave with fastest frequency

3. sample with twice the fastest frequency

periodicity does NOT depend on amplitudes or phases
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Using these characteristics, we can express any signal as a summation of sinusoidal waves:

x(t) =
N∑

k=1
Ak sin(2πkt + ϕk)

This is the case for signals with fundamental frequency of 1. Ak and ϕk are different for each wave because
periodicity doesnt depend on amplitudes and phases.

Recall trigonometric identity:

sin(2πkt + ϕk) = sin(2πkt) cos(ϕk) + cos(2πkt) sin(ϕk)

Then, the equation above can be written as
N∑

k=1
ak cos(2πkt) + bk sin(2πkt)

The phases Ak got absorbed into the coefficients ak and bk where

bk = Ak cos(ϕk) ak = Ak sin(ϕk)

To generalize this, we can add the zeroth term:

a0 +
N∑

k=1
ak cos(2πkt) + bk sin(2πkt)

In reality, this a0 can be something like a DC offset. Using Euler’s formula, we can obtain the final form

Our final form is
x(t) =

N∑
k=−N

ckej2πkt

where the complex value ck is a fourier coefficient

Important thing is that everything that we did here only applies to periodic signals. The fourier
transform addresses this limitation.

Question: why are there negative components? (why does k start from −N )

Revisitng the equation,
N∑

k=−N

ckej2πkt =
N∑

k=−N

ck cos(2πkt) + jck sin(2πkt)

We know that this also has to equal our sine and cosine counterpart:

a0 +
N∑

k=1
ak cos(2πkt) + bk sin(2πkt)

The kth frequency is going to equal to

ak cos(2πkt) + bk sin(2πkt) = ck cos(2πkt) + ck sin(2πkt) + c−k cos(2π(−k)t) + jc−k sin(2π(−k)t)
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Therefore, the −k term is used to cancel out imaginary values. Using cos(x) = cos(−x) and sin(−x) =
− sin(x), the whole expression becomes

ck cos(2πkt) + c−k cos(2πkt) + jck sin(2πkt) − jc−k sin(2πkt)

Therefore,

ak = ck + c−k

bk = jck − jc−k

We can also solve for ck :
ck = ak − jbk

2 c−k = ak + jbk

2
From these equations, we know that ck and c−k must be complex conjugates for the signal to be real.

ck = c∗
−k

Alternate explanation:

Notice that the eulers identity can be rewritten as

A cos(x) = A

2
(
ejx + e−jx

)
This shows that each cosine terms need two complex exponentials. This is why the series goes from −N
to N , which is the same as the original going from 1 to N

Question: If x(t) is periodic with period of 1, can we write

x(t) =
N∑

k=−N

ekej2πkt

Answer: not in a finite N . In fact, we can contain large informations with small number of sampling so
we dont have to sample near infinity. "Its close enough"

§5.3 Plotting Fourier Coefficients

§5.3.1 Finding ck

Question: How do we derive ck?

In our case where the fundamental period is 1, lets say we can write our signal in summations of cosines:

x(t) =
N∑

k=−N

ckej2πkt

We want to isolate a given ck value, only focusing on the mth term. Rearranging,

cmej2πmt = x(t) −
∑
k ̸=m

ckej2πkt
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Multiplying both sides by e−2πmt

cm = x(t)e−j2πmt −
∑
k ̸=m

ckej2πkte−j2πmt

This still didn’t simplify the equation. Now, we can integrate over one period of the signal (0 to 1 in this
case): ∫ 1

0
cmdt =

∫ 1

0
x(t)e−j2πmtdt −

∑
k ̸=m

ck

∫ 1

0
ej2π(k−m)tdt

How does this integral help? From the left, we just have
∫ 1

0 cmdt = cm. The right side, if given the x(t),
we can simplify by evaluating the integral of x(t). The last part, we evaluate the integral:

cm =
∫ 1

0
x(t)e−j2πmtdt −

∑
k ̸=m

ck

[
1

j2π(k − m)e2π(k−m)t|10

]

Since k and m are integers, ej2π(k−m) is always 1 (1 along the real line rotated by multiples of 2π). Then,

1
j2π(k − m)

(
ej2π(k−m) − 1

)
= 0

Also, since k ̸= m, there is not gonna be any indeterminate form. The final form is

ck =
∫ 1

0
x(t)e−j2πktdt

Since ck is a complex value, ck has an amplitude and a phase and can be written as

ck = |ck|ej∡ck

This is why when we plot ck, we have two graphs

• Amplitude: |ck| vs k

• Phase: ∡ck vs k

The coefficient k corresponds to the frequency, since frequencies are integer multiples of the fundamental

f = kf0

Note: The bound of the integral is from 0 to 1 because we are integrating over a single period.

Note: Any non-smooth function needs infinitely many coefficients to be exact. Smooth mathemati-
cally means infinitely differentiable.
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§5.3.2 General Fourier Series

Definition General Fourier Series
x(t) is periodic with a period T0

x(t) =
∞∑

k=−∞
ckejkω0t =

∞∑
k=−∞

ckej2πkf0t

where ω0 = 2πf0 = 2π
T0

For a particular cm,
cm = x(t)e−jmω0t −

∑
k ̸=m

ckejkω0te−jmω0(k−m)tdt

Integrating over a period,∫ T0

0
cmdt =

∫ T0

0
x(t)e−jmω0tdt −

∑
k ̸=m

ck

∫ T0

0
ejω0(k−m)tdt

Here, we want the term
ck

1
jω0(k − m)

[
ejω0(k−m)T0 − 1

]
to be zero.

e
j 2π

T0
(k−m)T0=ej2π(k−m)

= 1

The general form for analysis (dividing signals) is

ck = 1
T0

∫ T0

0
x(t)e−jkω0tdt

and the general form for syntheis is

x(t) =
∞∑

k=−∞
ckejkω0t

§5.3.3 Plotting FS Coefficients
Coefficnets ck are complex so we can plot |ck| and ∡ck separately

• for |ck|, the graph is symmetric to y-axis

• for the phase, there is a symmetry with the origin

§5.4 Plotting Fourier Coefficients
Goal: for a given signal, lets plot a fourier series
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For building intuition, we are just going to build fouier series using sinusoids. Lets say
∞∑

k=0
ckxk = 5x + 10x3 − 2x10

Then,

c1 = 5
c3 = 10

c=−2
10

We can do the same (matching terms) with the summation of cosines

Example: Consider a signal
x(t) = cos(2π2t)

How can we plot the fourier series graph?

The fundamental frequency in this case is

f0 = 2Hz ω0 = 2πf0 = 4π(rad/s)

We can decompose signals using euler’s identitycos(x) = 1
2 (ejx + e−jx)

sin(x) = 1
2j

(ejx − e−jx)

Decomposing our wave x(t), we get

x(t) = 1
2
(
ej2π2t + e−j2π2t

)
This is equal to the entire fourier series

∞∑
k=−∞

ckejkω0t = 1
2ej4πt + 1

2e−j4πt = 1
2ejω0t + 1

2ej(−1)ω0t

We can start matching terms, and we know that c1 and c−1 will have nonzero terms.

c1 = 1
2

c−1 = 1
2
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The graph shows us that the only frequency we have is one times the fundamental. We can also represent
the graphs in terms of f and ω:

Each k is the multiple of the fundamentals.

Example: Consider a signal

x(t) = cos(2π2t) + 2 cos(2π3t − π

3 )

Solution. Question: is the signal periodic? We can list frequencies of both waves

f1 = 2, T1 = 1
2 f2 = 3, T2 = 1

3
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We can find the fundamental frequency using the GCD

f0 = gcd(f1, f2) = 1 Hz

Now we can decompose the signal:

= 1
2
(
ej2π2t + e−j2π2t

)
+
(

ej(2π3t− π
3 ) + e−j(2π3t− π

3 )
)

We can match terms with the fourier series
∞∑

k=−∞
ckejkω0t

The first term 1
2ej4πt corresponds to c2 since ω2 = 4π. In a similar sense, we can match

c2 = 1
2

c−2 = 1
2

c3 = ejπ/3

c−3 = ejπ/3

We can now plot the amplitude and the phase
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Remember that amplitude has a symmetry across the y-axis and the phase is symmetric across the origin.

Example: Consider a signal

x(t) = 5 − 3 cos(100t) + 8 sin(300t + 3π

4 )

Solution. Our ω0 is going to be the greatest common divisor between ω1 and ω2 :

ω0 = gcd(100, 300) = 100

The nonzero coefficients are going to be 0, 1, 2, −1, −2

We can convert all the negative cosine terms into positive using a phase shift cos(x) = cos(2π − x). We
can also convert the sine term into a cosine by using cos(x − π

2 ) = sin(x) Then,

x(t) = 5 + 3 cos(100t − pi) + 8 cos
(

300t + 3π

4 − π

2

)
= 5 + 3

2
(
ej(100t−π) + e−j(100t−π)

)
+ 8

2

(
ej(300t+ π

4 ) + e−j(300t+ π
4 )
)

= 5 + 3
2e−jπej100t + 3

2ejπe−j100t + 4ejπ/4ej300t + 4ejjπ/4e−j300t

We can match each term with its frequency

c0 = 5 c1 = c−1 = 3
2 c3 = c−3 = 4

We do not have c2 because we had nothing with two times the fundamental frequency f0. We only
had 100 and 300, not ω = 200.

§5.5 Fourier Transform
Fourier transform is used to find the frequency content of aperiodic signals. This can be viewed as a foruier
series where T0 → ∞.

Assume a aperiodic signal from −T1 to T1.

We can periodize the signal
x̃(t) =

∞∑
k=−∞

ckejkω0t

From our derivation from the previous lecture,

ck = 1
T0

∫ T0/2

−T0/2
x̃ejkω0tdt = 1

T0

∫ ∞

−∞
x(t)e−jkω0tdt
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Instead of having a continuous ω, we can sample using

X(ω) =
∞
inf
−∞

x(t)ee−jωtdt

We can rewrite the series as
∞∑

k=−∞

1
T0

X(kω0)ejkω0t = 1
2π

∞∑
k=−∞

X(kω0)ejkω0t

As T0 approaches infinity, then the x̃ approaches x(t) since we are pushing waves away from each other.
Then, ω0 → 0. Effectively, we have made a riemman sum.

Definition Fourier Transform
Fourier transform for analysis:

X(ω) =
∫ ∞

−∞
x(t)e−jωtdt

Fourier transform for synthesis:
x(t) = 1

2π

∫ ∞

−∞
X(ω)ejωtdω

Why fourier transform? Fourier analysis only can analyze with multiples of the fundamental, so if we stop,
we would be looking at the periotized signal instead of the aperiodic signal.

§5.6 Sampling

Definition Sampling
We want to turn a continuous signal into a discrete signal

x(t) → x [n]

where n ∈ Z

There are nonuniform sampling, but we stick with uniform sampling for this course.

Example: Consider a signal
x(t) = cos(2πf0t + ϕ0)

Sample at fs

We get

x(t) = cos(2πf0t + ϕ0) → x [n] = x [nTs] = x

(
n

fs

)

= cos(2πf0
n

fs

+ ϕ0 = cos
(

2π

(
f0

fs

)
n + ϕ0

)
We consider another frequency

y(t) = cos(2π(f0 + fs)t + ϕ0) ⇒ y [n] = y

(
n

fs

)
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= cos(2π (f0 + fs)
(

n

fs

+ ϕ0

)
= cos

(
2π

f0

fs

n + 2π

(
fs

fs

n + ϕ0

))
= x [n]

§5.6.1 Aliasing
Lets say we have two signals

x1(t) = cos(400πt) x2(t) = cos(2400πt)

where they are sampled at fs = 1000 Hz.

x1 [n] = cos
(

400π
(

n

1000

))
= cos (0.4πn)

x2 [n] = cos
(

2400π
(

n

1000

))
= cos(0.4πn) = x1 [n]

This is a problem because x1 and x2 are different waves. In fact, cos(4.4πn), cos(6.4πn),... would look the
same.

Definition Normalized Frequency
The normalized frequency ω̂ is

ω̂ = ω

fs

§5.6.2 Reconstruction
In whatever frequency we sample, there are infinitely many signals that goes through all of the points (not
necessarily sinusoidal)

If we want to go back to a continuous time signal, choose the smoothest signal that goes through the
samples. Essentially, smoothest = lowest frequency.

Since the normalized frequency spectrum is 2π · periodic, we will choose the range between −π and π to
preserve symmetry.

How to determine aliasing

1. normalize frequency spectrum fs to get ω̂

2. plot spectrum as a function of ω̂ (pretend this is the only frequency we have)

3. Periodize spectrum by 2π

4. Take whatever ends up in the range [−π, π]

if reconstructed signal in [−π, π] is not same as the original, aliasing has occured.

Example: For sinusoids, aliasing is going to result in a lower frequency.

x(t) = cos(2400πt), fs = 1000Hz
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We solve for normalized frequency:
ω̂1 = 2400π

fs

= 2.4π

We then plot the spectrum:

(plot)

Proof for all general signals:

We can think of any general signal a combination of cosine waves. Lets say we have a general signal x(t)
and perform a fourier transform. After sampling,

Theorem 5.6.5 Shannon’s Sampling Theorem
A continuous time signal x(t) with frequencies no greater than fm can be reconstructed exactly from
its samples if fs > 2fm

Proof. Revisit proof from 11/7 lecture
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